Abstract
Background: Diamond Blackfan anemia (DBA) is a congenital anemia characterized by failure of adequate erythrocyte expansion from hematopoietic precursors. The genetic basis of DBA is largely established, with mutation or deletion of at least 19 structural ribosomal protein (RP) genes, a RP chaperone (TSR2), or a pivotal erythroid transcription factor (GATA1) identifiable in most DBA cases. However, the marked clinical variability in DBA-including varying ages of presentation, severity of anemia, responsiveness to corticosteroids, and sporadic hematologic remissions-remains unexplained by genotype and may be modulated by epigenetic factors. Further understanding of this variability is of potential therapeutic relevance for biomarkers of steroid response and remission as well as in application to novel treatment approaches.
Aim: We characterized genome-wide methylation and chromatin accessibility of erythroid progenitors from normal controls and DBA patients during erythroid commitment in order to identify the epigenetic features associated with erythroid failure in DBA, steroid response, and remission.
Methods: We expanded and sorted CD71+/CD235- (transferrin receptor/glycophorin A) and CD71+/CD235+ erythroid cell fractions from DBA patients and controls after isolation of primary circulating CD34+ cells from peripheral blood (O'Brien et al, Blood 129(23):3111, 2017). We performed DNA methylation analysis using Illumina Epic arrays in 9 control and 22 DBA subjects (11 transfusion-dependent, 6 steroid responsive, 5 remission), characterizing differentially methylated probes and regions among groups. To define broad chromatin domains, we identified A/B chromatin compartments (representing open/closed chromatin) using long-range correlations in methylation data as previously described (Fortin et al. Genome Biol 16:180, 2015). To identify discrete local changes in chromatin accessibility, we performed ATAC-sequencing in 9 controls and 17 DBA patients (10 transfusion, 6 steroid, 1 remission).
Results: Global DNA methylation falls during erythroid commitment, with 258,618 differentially hypermethylated CpG sites in normal control GlyA- cells compared to their more differentiated GlyA+ counterparts. This pattern is exaggerated in DBA samples, with 297,926 sites hypermethylated in GlyA- cells. We identified 17,392 CpC sites that distinguish GlyA- DBA progenitors from normal progenitors (16,953 hyper- and 439 hypomethylated). We identified 1,749 differentially methylated sites in comparison of transfusion dependent and remission DBA, as well as 79 sites different between transfusion dependent and steroid responsive DBA.
Using genome-wide methylation data, we evaluated A/B compartment organization among these groups to identify large regions of open and closed chromatin during normal and DBA early erythroid differentiation. We observe significant shifts in A/B compartments in normal cells concurrent with the acquisition of GlyA surface expression. At genome scale, transfusion dependent and steroid resistant DBA samples are generally similar to each other, with thousands of regions where A/B identity are closely matched in DBA, but diametrically opposed to the configuration in stage-matched normal controls. Intriguingly, remission samples generally matched A/B compartments of other DBA samples in GlyA- fractions but GlyA+ compartments more closely resemble those of the controls, indicating that normalization of chromatin structural maturation accompanies hematologic remission.
We generated a uniform set of 8,877 enriched ATAC-seq peaks on autosomes for differential chromatin accessibility analysis. As with methylation data, a large proportion (25%; 1085 up and 1114 down, B-H adj. P < 0.1) showed differential accessibility in normal control GlyA- vs GlyA+ cells. Steroid-responsive cases showed additional regions of differential accessibility during early maturation, with 31% of regions (1515 up and 1248 down) differentially accessible. Among transfusion dependent DBA patients, this count was much higher, with over half of peak regions (52%, 2400 up and 2216 down, B-H adj. P < 0.1) showing differential accessibility.
Conclusion: Epigenetic maturation is broadly altered in DBA erythroid progenitors compared to stage matched normal controls, with specific changes identifiable in patients responding to steroids and in remission.
No relevant conflicts of interest to declare.
Author notes
Asterisk with author names denotes non-ASH members.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal